Performance Analysis and Coding Strategy of ECOC SVMs
نویسندگان
چکیده
The theoretical upper bound of generalization error for ECOC SVMs is derived based on Fat-Shattering dimensionality and covering number. The factors affecting the generalization performance of ECOC SVMs are analyzed. From the analysis, it is believed that in real classification tasks, the performance of ECOC depends on the performance of the classifiers corresponding to its coding columns, which is irrelevant to the mathematical characteristics of the ECOC itself. The essence of ECOC SVMs is how to construct an optimal voting machine consisting of a number of SVMs, how to choose Sub-SVMs which have better generalization ability, and how to determine the number of Sub-SVMs taking part in voting, that is the most important issue. Data sets including “Segment” are selected for test. All the ECOC code columns are constructed using an exhaustive technique. A Sub-SVM is trained for each code column, and the generalization ability of each Sub-SVM is evaluated by classification intervals and error rates estimated by cross validation. Then, all the ECOC code columns are sorted by the generalization performance of Sub-SVMs. Three categories of ECOC SVMs, including superior, inferior and ordinary categories, are constructed from the sorted ECOC code columns, by using forward, backward and original sequences. Experimental results show that the performance of ECOC SVMs which consist of Sub-SVMs with better generalization ability is better and vice versa, which validates our view and points out the direction for improving ECOC SVMs.
منابع مشابه
Weighted Strategy for Error-Correcting Output Codes
Error Correcting Output Codes technique (ECOC) represents a general framework capable to extend any binary classification process to the multi-class case. In this work, we present a novel decoding strategy that takes advantage of the ECOC coding to outperform the up to now existing decoding strategies. The results show that the presented methodology considerably increases the performance of the...
متن کاملLoss-Weighted Decoding for Error-Correcting Output Coding
The multi-class classification is a challenging problem for several applications in Computer Vision. Error Correcting Output Codes technique (ECOC) represents a general framework capable to extend any binary classification process to the multi-class case. In this work, we present a novel decoding strategy that takes advantage of the ECOC coding to outperform the up to now existing decoding stra...
متن کاملSeparability of ternary codes for sparse designs of error-correcting output codes
Error-correcting output codes (ECOC) represent a successful framework to deal with multi-class categorization problems based on combining binary classifiers. With the extension of the binary ECOC to the ternary ECOC framework, ECOC designs have been proposed in order to better adapt to distributions of the data. In order to decode ternary matrices, recent works redefined many decoding strategie...
متن کاملOn the design of an ECOC-Compliant Genetic Algorithm
Genetic Algorithms (GA) have been previously applied to Error-Correcting Output Codes (ECOC) in stateof-the-art works in order to find a suitable coding matrix. Nevertheless, none of the presented techniques directly take into account the properties of the ECOC matrix. As a result the considered search space is unnecessarily large. In this paper, a novel Genetic strategy to optimize the ECOC co...
متن کاملImprovement of Performance in Multiclass Problems by Using Biclassification Based on Error-Correcting Output Code
Error-correcting output coding (ECOC) is a widely used multicategory classification algorithm that decomposes multiclass problems into a set of binary classification problems. In this paper, we propose a new method based on a bi-classification strategy, consisting of one-vs-one and ECOC classification. Also we introduce methods to improve a standard ECOC. The proposed method is compared to othe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014